

TRANSITION TOWARDS 100% RENEWABLE ENERGY IN THE PACIFIC

Christian Breyer¹, Gabriel Lopez¹, Mai ElSayed¹, Maxi-Ann Campbell¹, Akash J. Handique², Rebecca Peer², Jannik Haas²

¹ LUT University, Finland

² University of Canterbury, New Zealand

Pacific Islands are rich in renewable energy opportunities

Expansion of renewable electricity can reduce electricity generation costs (slide 17)

Opportunity to reduce/ eliminate fossil fuel imports (slide 19)

Accelerated (2040) net-zero transition with similar costs as 2050 net-zero target (BPS vs CPS) (slide 17)

100% Renewable Energy on Pacific Islands

Key Insights

- Pacific islands not well researched in 100% RE systems literature
 - 16 articles in total (6 in Meschede et al.): Samoa, Fiji, Galapagos (4x), Hawaii (6x), Ecuadorian island, Australian islands (3x)
 - Studies for Pacific tend to focus on larger islands: Japan, the Philippines, Indonesia, Australia, New Zealand, Hawaii
 - Pacific Island full sector energy transition for small islands remains a significant research gap

LUT Research on Islands

>> Small Islands

- Global Islands Review 100% RE
- Global Islands hybrid RE systems
- <u>Åland ET main options</u>
- Åland ET V2G
- Greenland ET e-fuels export
- La Gomera ET main options
- La Gomera ET multi-years
- Maldives ET offshore energy
- Maldives ET OTEC
- <u>Seychelles ET EP-ALISON-LUT</u>

>> Large Islands

- <u>Global Islands Review 100% RE</u>
- <u>Caribbean ET & Puerto Rico</u>
- Hawaii ET storage and PtX Economy
- Hawaii ET ocean energy diversity
- Sri Lanka ET
- Philippines ET
- UK & Ireland ET onshore vs offshore
- UK & Ireland ET inter-annual storage
- Japan ET transition options
- Japan ET hierarchical modelling
- Japan ET flexibility: smart charging, V2G, electrolysers
- Australia carbon sinks and sustainable communities

LUT Energy System Transition Model

source:

recent reports

Key features:

- full hourly resolution, applied in global-local studies, comprising more than 150 technologies
- strong consideration of all kinds of Power-to-X (heat, fuels, chemicals, materials, freshwater, CO₂, CDR, forests)
- allows for e-fuel imports to replace fossil fuel imports

Scenarios Investigated

- BPS Best Policy Scenario reaching net-zero emissions in all energy and industry sectors by 2050
- BPS-80 same target as BPS, but with solar PV limited to 80% of all electricity generation
- BPS-60 same target as BPS, but with solar PV limited to 60% of all electricity generation
- BPS-2040 net-zero emissions for all energy and industry sectors by 2040
- DPS delayed policy scenario, with some reduced integration of electric heating, heat pumps, and e-fuels/e-chemicals
- CPS current policy scenario, largely targeting significant emissions reduction in the power sector, but limited electrification of heat, transport, and industry sectors
- Islands groups modelled

1	PG	Papua New Guinea
2	US-HI	Hawaii
3	FJ	Fiji
4	FR-NC	New Caledonia, Norfolk Island
5	EI-GI	Easter Island, Galapagos Islands
6	US-GN	Guam, N Mariana Islands
7	SV	Solomon Islands, Vanuatu
8	FMP	Fed. Stat. Micronesia, Marshall Islands, Palau
		American Samoa, Cook Islands, French Polynesia, Kiribati, Nauru, Niue, Pitcairn Islands, Samoa,
9	OPIST	Tokelau, Tonga, Tuvalu, Wallis and Futuna

LUT University

Techno-Economic Assumptions: RE supply

Technologies	Parameter	Unit	2020	2025	2030	2035	2040	2045	2050
PV rooftop – residential	Capex	€/kW _{el}	1150	926	787	622	551	496	453
	Opex fix	€/(kW _{el} ·a)	9.13	7.66	6.66	5.88	5.26	4.75	4.36
	Opex var	€/kWh _{el}	0	0	0	0	0	0	0
	Lifetime	Years	30	35	35	35	40	40	40
PV rooftop – commercial	Capex	€/kW _{el}	758	598	502	393	345	308	280
	Opex fix	€/(kW _{el} ·a)	9.13	7.66	6.66	5.88	5.26	4.75	4.36
	Opex var	€/kWh _{el}	0	0	0	0	0	0	0
	Lifetime	Years	30	35	35	35	40	40	40
PV rooftop – industrial	Capex	€/kW _{el}	563	437	362	281	245	217	197
	Opex fix	€/(kW _{el} ·a)	9.13	7.66	6.66	5.88	5.26	4.75	4.36
	Opex var	€/kWh _{el}	0	0	0	0	0	0	0
	Lifetime	Years	30	35	35	35	40	40	40
	Capex	€/kW _{el}	475	370	306	237	207	184	166
PV fixed tilted	Opex fix	€/(kW _{el} ·a)	7.76	6.51	5.66	5	4.47	4.04	3.7
	Opex var	€/kWh _{el}	0	0	0	0	0	0	0
	Lifetime	Years	30	35	35	35	40	40	40
	Capex	€/kW _{el}	523	407	337	261	228	202	183
BV singlo-axis tracking	Opex fix	€/(kW _{el} ·a)	8.54	7.16	6.23	5.5	4.92	4.44	4.07
FV Single-axis tracking	Opex var	€/kWh _{el}	0	0	0	0	0	0	0
	Lifetime	Years	30	35	35	35	40	40	40
	Capex	€/kW _{el}	1425	1110	765	474	414	368	332
BV floating	Opex fix	€/(kW _{el} ·a)	28.5	22.2	15.3	9.48	8.28	7.36	6.64
i v noating	Opex var	€/kWh _{el}	0	0	0	0	0	0	0
	Lifetime	Years	20	25	25	25	30	30	30
Wind onshore	Capex	€/kW _{el}	1150	1060	1000	965	940	915	900
	Opex fix	€/(kW _{el} ·a)	23	21.2	20	19.3	18.8	18.3	18
	Opex var	€/kWh _{el}	0	0	0	0	0	0	0
	Lifetime	Years	25	25	25	25	25	25	25
	Capex	€/kW _{el}	2973	2561	2287	2216	2168	2145	2130
Wind offshore	Opex fix	€/(kW _{el} ·a)	85.0	73.0	65.9	64.0	62.0	61.0	60.7
which offshore	Opex var	€/kWh _{el}	0	0	0	0	0	0	0
	Lifetime	Years	25	25	25	25	25	25	25
	Capex	€/kW _{el}	21420	6326	2777	2247	2012	1819	1731
Wave power	Opex fix	€/(kW _{el} ·a)	1050	367	75	56	48	45	42
wave power	Opex var	€/kWh _{el}	0	0	0	0	0	0	0
	Lifetime	years	20	20	25	25	30	30	30

>> all capex and opex values are multiplied by a factor of 1.25 to represent costs for shipping and remoteness

>> sometimes criticised as "overly optimistic" but reality surprises us with even lower costs (link).

Techno-Economic Assumptions: PtX, Storage and Imports

Technologies	Parameter	Unit	2020	2025	2030	2035	2040	2045	2050
Water Electrolysis	Capex	€/kW _{H2LHV}	803	586	446	381	347	313	291
	Capex	€/kW _{el}	1146	836	636	544	495	447	415
	Opex fix	€/(kW _{H2.LHV} ·a)	28.1	20.5	15.6	13.3	12.1	11.0	10.2
	Opex var	€/kWh _{H2.LHV}	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014
	Lifetime	years	30	30	30	30	30	30	30
	Efficiency	coeff _{LHV}	0.701	0.701	0.701	0.701	0.701	0.701	0.701
Battery utility-	Capex	€/kWh _{el}	234	153	110	89	76	68	61
scale Storage	Opex fix	€/(kWh _{el} ·a)	3.28	2.6	2.2	2.05	1.9	1.77	1.71
	Opex var	€/kWh _{el}	0	0	0	0	0	0	0
	Lifetime	years	20	20	20	20	20	20	20
	Round-trip	coeff	0.91	0.92	0.93	0.94	0.95	0.95	0.95
Battery utility-	Capex	€/kW _{el}	117	76	55	44	37	33	30
scale Interface	Opex fix	€/(kW _{el} ·a)	1.64	1.29	1.1	1.01	0.93	0.86	0.84
	Opex var	€/kWh _{el}	0	0	0	0	0	0	0
	Lifetime	years	20	20	20	20	20	20	20
Hydrogen Storage	Capex	€/kWh _{H2.LHV}	0.28	0.28	0.28	0.28	0.28	0.28	0.28
	Opex fix	€/(kWh _{H2.LHV} ·a)	0.0112	0.0112	0.0112	0.0112	0.0112	0.0112	0.0112
	Opex var	€/kWh _{H2.LHV}	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
	Lifetime	years	30	30	30	30	30	30	30
	Round-trip	coeff _{LHV}	1	1	1	1	1	1	1
Import e-methanol	€/MWh _{th}			152	138	117	96	90	84
Import e-ammonia	€/MWh _{th}			163	150	131.25	112.5	105	97.5
Import e-FTL fuels	€/MWh _{th}			216	195	165	135	123.8	113

>> all capex and opex values are multiplied by a factor of 1.25 to represent costs for shipping and remoteness

>> e-Fuel import prices are based on global average import prices, with an additional factor of 1.5 for increased shipping distances and cost of remoteness

Energy Demand Projections

2040

US-GN SV

2035

2030

FR-NC

EI-GI

2045

FMP

2050

OPIST

2025

FJ FR-NC

2030

2035

EI-GI

2040

US-GN SV

2045

2050

OPIST

2020

US-HI

PG

0 %

PG

Final energy demand (TFED)

- Projected to increase over time, largely due to demand increases in Papua New Guinea (PG)
 - US-HI and PG compose >75% of the TFED in all years in the BPS
- Growth largely driven by the transport sector despite efficiency gains through direct electrification
 - Under CPS conditions, with limited electrification of heat, transport, and industry sectors, 18% higher than BPS conditions

Primary energy demand (TPED)

- **Under BPS conditions, TPED sees significant** reduction in fuel demand as renewable electricity reaches 61-64% of TPED.
 - Fuel demand decreases by 63% compared to 2020 in BPS, only 32% and 2% in the DPS and CPS
 - Lowest TPED found in the BPS-60 due to increased supply complementarity
- Renewable electricity and e-fuel imports dominate the primary energy supply

Electricity Generation

Electricity capacity

- Total installed capacity significantly increases in the BPSs from 7 GW in 2020 to 73-87 GW in 2050
 - Solar PV composes 67-87% of installed capacity
 - Largest installed capacity in PG, with 38 GW
 - Across the Pacific, prosumers contribute 13.7 GW
- DPS also sees significant capacity growth to 76 GW, and the CPS sees only moderate growth to 47 GW
- Solar PV-dominant structure apparent for all regions
 - Wind power growth follows, with 3-13 GW across BPSs

Electricity generation

- Electricity generation increases from 26 TWh to 144-150 TWh in the BPSs
 - Dominated by solar PV (58-89%), followed by wind power (8-58%)
 - Prosumers contribute 13-14% of electricity generation in BPS, 14% and 20% in the DPS and CPS
- By 2040, 99% of all electricity generation comes from renewable electricity
 - Small amounts of hydrogen used in combustion generators
- Electricity generation in the DPS and CPS reach 116 TWh and 78 TWh

Regional Electricity Generation

BPS

PV prosumer PV fixed tilted PV single-axis PV fixed tilted bifacial PV single-axis bifacial Wind onshore Wind offshore Coal Oil Gas

BPS-60

Biomass Waste-to-energy Biogas Wave

- Hydro run-of-river
 Hydro dams
 Steam Turbine
- Geothermal
- PV floating offshore
- PV prosumer
- PV fixed tilted
- PV single-axis PV fixed tilted bifacial
- PV fixed tilted blactal
- Wind onshore
- Wind offshore
- Coal
- Oil
- Gas
- Nuclear

Regional electricity generation

- For most regions, onshore resources are sufficient to satisfy growing demands
 - In BPS, US-GN offshore floating PV (27%) is required
 - In BPS-60, offshore wind power (26%) is required in PG, offshore floating PV in US-GN (5.9%), and wave power (2%, 19%, and 20%) in OPIST, US-GN, and FMP
 - Geothermal is also relevant in PG and US-GN in BPS-60, at 11% for both regions
- Under BPS conditions, onshore wind power contributes >18% of generation supply in US-HI, FR-NC, US-GN, and OPIST
- Limited hydropower potential across the Pacific leads to a maximum 12% share in FJ in the BPS
 - In BPS-60, FR-NC slightly increases hydropower to 6%

LUT University

Heat Generation

4

Heat capacity

- Increased integration of low-cost renewables along with growing demands lead to a doubling of heat capacity from 2020 to 2050
- First, direct electric heating installed, reaching 7 GW, followed by heat pumps, at 4 GW
- Higher supply diversity in the BPS-60 reduces required heat capacity as supply is more aligned with demand
- Rapid transition in BPS-2040 leads to reduced capacity compared to BPS conditions
- DPS also sees a trend towards electrification of heat supply
- CPS prefers high-FLH technologies, resulting in the lowest heat capacity

Heat generation

- Heat generation increases from 17 TWh in 2020 to 49-57 TWh in 2050
- High oil prices in addition to CO₂ emissions prices largely lead to a rapid phase-out of oil heat
 - Gas heating remains relevant for PG
- Sustainable bioenergy use in BPSs and DPS remains constant at ~10 TWh
- CPS sees unsustainable use of bioenergy for heating, with limited penetration of electric heating

Electricity Storage

Storage Capacity

- Total storage capacity increases to 84-140 GWh in 2050 across scenarios
 - Increased supply diversity in BPS-60 leads to 15% reduced capacity compared to BPS
- Electrification of transport leads to 63 GWh of available V2G capacity in 2050 in the BPS
 - 46 GWh in the DPS, and 21 GWh in the CPS
- Battery storage essential in the Pacific as there is no PHES potential

Storage throughput

 Storage throughput in 2050 dominated by utility-scale batteries (50-71%), followed by V2G (13-33%), and prosumer batteries (12-21%)

Operational Dynamics - BPS

120 150 180 210 240 270 300 330 360

Days of a year

30 60 90

25%

Dynamics of key energy system components

- Energy systems with high shares of variable renewables require flexibility: supply complementarity, demand response, sector coupling, grids, and storage
- On island systems with e-fuel imports, demand response through electrolysers and grids may be limited
- Battery storage essential in balancing daily demands
 - Charging during the day and discharging at night
 - Slight seasonal variation and influence of wind power
- Electrolysers required for direct e-H₂ demands, operate when excess solar PV and wind electricity is available
 - H₂ storage to balance e-H₂ supply and demand in transport and for high temperature heating, largely shows a seasonal balancing
- Curtailment across the Pacific remains low in the BPS, at an average of 2.7% of demand in 2050
 - SV has the highest curtailment at 5.9%

Transport Sector – BPS and CPS

BPSs

- Total fuel demand decreases with electrification of road vehicles
- Fuel demand remains high due to the high share of aviation, increasing from ~40% in 2020 to ~60% in 2050
 - Consequently, the share of e-FTL remains high
 - Hydrogen for short distance flights leads to significant growth in direct e-H₂ usage
 - e-Methanol and e-ammonia demand grows for marine transport
- Total electricity demand for transport reaches 58 TWh in 2050, with the majority for e-H₂

CPS

- Without GHG pricing and electrification, oil remains the dominant fuel for transport in the CPS
 - Electricity and e-fuels only compose 10% of the transport FED
- Electricity demand for transport only reaches around 10 TWh

LCOE and Levelised Cost of Final Energy

- All scenarios see significant reductions in LCOE from 100 €/MWh in 2020 without GHG emissions costs to 30-49 €/MWh in 2050
 - Limited electrification and flexibility in CPS leads to a higher share of storage (LCOS) in the LCOE
 - Increased supply diversity in BPS-60 leads to higher capex requirements, particularly for wind power
- Levelised cost of heat increases in the short-term before electric heating becomes the least-cost supply
 - LCOH reaches cost-parity relative to 2020 (28.9 €/MWh) in 2050 across scenarios (27.7-29.5 €/MWh)
- Levelised cost of final energy (LCOFE) decreases from 61 €/MWh in 2020 to 41-55 €/MWh
 - BPS-60 leads to highest costs, whereas CPS, without GHG emissions costs, leads to the lowest
- Accelerated transition in BPS-2040 leads to an LCOFE equal to that of BPS

Regional LCOE

LCOE primary LCOS

LCOE primary

LCOS LCOC

LCOT

LCOC LCOT

Components of Levelised Cost of Electricity

BPS

- The average LCOE of 29 €/MWh varies significantly across regions
 - High demand regions of US-HI and PG have low LCOEs at 23.3 and 29.4 €/MWh
 - SV has the lowest LCOE at 22.9 €/MWh, despite having the highest share of curtailment in LCOE
- Small demand islands can also reach low LCOEs, such as GI-EI, with an LCOE of 28.7 €/MWh
- FR-NC and US-GN have the highest LCOEs, at 47.9 and 40.6 €/MWh, largely due to higher-than-average LCOS shares

BPS-60

- US-HI and SV largely not affected by solar PV supply limits, with LCOEs at or below 30 €/MWh
- GI-EI most affected, as LCOE increases to 59 €/MWh
 - PG and FR-NC also have LCOEs at or above 50 €/MWh
- Despite increases in LCOE in BPS-60 compared to BPS, all regions see significant reductions in LCOE compared to present conditions

Energy Flows in Power-to-X Economy for the Pacific

- Primary energy becomes dominated by renewable electricity and e-fuels imports
 - Limited bioenergy and solar thermal used for individual and industrial heating
- The energy flow is best described as a Power-to-X Economy where electricity is used wherever possible, along with strong sector coupling and hydrogen use if direct electricity is not possible
- Solar PV composes 77% of all local primary energy demand, 57% including imports
- e-Fuel imports compose 26% of TPED
 - All fuel demands under BPS conditions are reduced by 63% compared to 2020

More information on the Power-to-X Economy:

Breyer, Lopez, et al., 2024. Power-to-X Economy. International Journal of Hydrogen Energy

Summary

- >> The Pacific Islands are rich in renewable energy opportunities
 - Expansion of renewable electricity can reduce electricity generation costs and overall energy system costs
 - An accelerated transition to net-zero emissions by 2040 leads to similar energy system costs (as net-zero emissions by 2050)
 - Solar PV contributes the large majority of local primary energy demand
 - For islands with limited land availability, offshore floating PV, offshore wind power, and wave power are available
 - Altogether, this is a chance to reduce dependence on oil imports

>> General findings

- Electrification of energy demands on small islands increases flexibility and, along with low-cost battery storage, reduces curtailment
- Current policy scenario (CPS) may defossilise power sector, but keeps heat and transport sectors largely fuel dependent
- **GHG** emissions pricing mechanisms can help facilitate transitions to high shares of renewable energy
- Power-to-X Economy, with solar PV at its core, is attractive for the region to increase self-sufficiency

Thank you for your attention and to the team!

all publications at: <u>www.scopus.com/authid/detail.uri?authorld=39761029000</u> new publications also announced via Twitter: <u>@ChristianOnRE</u>